Thursday, January 10, 2019

Mikroskop

Mikroskop (bahasa Yunanimicros = kecil dan scopein = melihat) adalah sebuah alat untuk melihat objek yang terlalu kecil untuk dilihat secara kasat mata. Mikroskop merupakan alat bantu yang dapat ditemukan hampir diseluruh laboratorium untuk dapat mengamati organisme berukuran kecil (mikroskopis). Ilmu yang mempelajari benda kecil dengan menggunakan alat ini disebut mikroskopi, dan kata mikroskopik berarti sangat kecil, tidak mudah terlihat oleh mata.


Jenis-jenis mikroskop[sunting | sunting sumber]


Mikroskop digital yang bisa tersambung dengan komputer
Jenis paling umum dari mikroskop, dan yang pertama diciptakan, adalah mikroskop optis. Mikroskop ini merupakan alat optik yang terdiri dari satu atau lebih lensa yang memproduksi gambar yang diperbesar dari sebuah benda yang ditaruh di bidang fokal dari lensa tersebut.
Berdasarkan sumber cahayanya, mikroskop dibagi menjadi dua, yaitu, mikroskop cahaya dan mikroskop elektron. Mikroskop cahaya sendiri dibagi lagi menjadi dua kelompok besar, yaitu berdasarkan kegiatan pengamatan dan kerumitan kegiatan pengamatan yang dilakukan. Berdasarkan kegiatan pengamatannya, mikroskop cahaya dibedakan menjadi mikroskop diseksi untuk mengamati bagian permukaan dan mikroskop monokuler dan binokuler untuk mengamati bagian dalam sel. Mikroskop monokuler merupakan mikroskop yang hanya memiliki 1 lensa okuler dan binokuler memiliki 2 lensa okuler. Berdasarkan kerumitan kegiatan pengamatan yang dilakukan, mikroskop dibagi menjadi 2 bagian, yaitu mikroskop sederhana (yang umumnya digunakan pelajar) dan mikroskop riset (mikroskop dark-field, fluoresens, fase kontras, Nomarski DIC, dan konfokal).

Struktur mikroskop[sunting | sunting sumber]

Ada dua bagian utama yang umumnya menyusun mikroskop, yaitu:
  • Bagian optik, yang terdiri dari lensa objektif dan lensa okuler.
  • Bagian non-optik, yang terdiri dari kaki dan lengan mikroskop, diafragma, meja objek/meja preparat, pemutar halus dan kasar, penjepit kaca objek (preparat),cermin, kondensor, dan sumber cahaya.

Pembesaran[sunting | sunting sumber]

Tujuan mikroskop cahaya dan elektron adalah menghasilkan bayangan dari benda yang dimikroskop lebih besar. Pembesaran ini tergantung pada berbagai faktor, diantaranya titik fokus kedua lensa( objektif f1 dan okuler f2, panjang tubulus atau jarak(t) lensa objektif terhadap lensa okuler dan yang ketiga adalah jarak pandang mata normal(sn). Rumus: 

Sifat bayangan[sunting | sunting sumber]

Baik lensa objektif maupun lensa okuler keduanya merupakan lensa cembung. Secara garis besar lensa objektif menghasilkan suatu bayangan sementara yang mempunyai sifat semu, terbalik, dan diperbesar terhadap posisi benda mula-mula, lalu yang menentukan sifat bayangan akhir selanjutnya adalah lensa okuler. Pada mikroskop cahaya, bayangan akhir mempunyai sifat yang sama seperti bayangan sementara, semu, terbalik, dan lebih lagi diperbesar. Pada mikroskop elektron bayangan akhir mempunyai sifat yang sama seperti gambar benda nyata, sejajar, dan diperbesar. Jika seseorang yang menggunakan mikroskop cahaya meletakkan huruf A di bawah mikroskop, maka yang ia lihat adalah huruf A yang terbalik dan diperbesar.
sumber : https://id.wikipedia.org/wiki/Mikroskop

Kaca Pembesar (Lup)

Lupkaca pembesar atau suryakanta adalah sebuah lensa cembung yang mempunyai titik fokus yang dekat dengan lensanyaBenda yang akan diperbesar terletak di dalam titik fokus lup itu atau jarak benda ke lensa lup tersebut lebih kecil dibandingkan jarak titik fokus lup ke lensa lup tersebut. Bayangan yang dihasilkan bersifat tegaknyata, dan diperbesar. Lup ditemukan oleh seorang dari Arab bernama Abu Ali al-Hasan Ibn Al-Haitham.

Menghitung jarak titik fokus suatu Lup[sunting | sunting sumber]

Titik fokus suatu lup menentukan perbesaran yang dihasilkan, oleh karena itu titik fokusnya adalah besaran yang perlu diketahui (lihat juga di bawah). Dalam penggunaan sehari-hari jarak titik fokus dari sebuah lup dapat ditentukan dengan percobaan sederhana cahaya dapat dikumpulkan di satu titik yang berjarak tertentu dari lensa lup. Apabila cahaya mencapai tingkat energi yang tinggi maka kertas, serpih kayu, atau lainnya dapat terbakar ketika diletakkan di bawah lup tersebut. Dalam hal ini cahaya dikumpulkan di sebuah titik yang disebut titik fokus atau titik api yang sifatnya maya atau semu bukan nyata atau di belakang lensa tersebut.
Metode lain yang lebih nyata untuk menentukan jarak titik fokus atau disebut juga Autoklimasi dapat menggunakan:

Pembesaran[sunting | sunting sumber]

  •  Perbesaran angular
  •  Sudut pandang tanpa Lup
  •  Sudut pandang dengan Lup
  •  Jarak pandang normal
  •  Besar objek
  •  Titik fokus
sumber : https://id.wikipedia.org/wiki/Lup

Kamera

Kamera adalah alat paling populer dalam aktivitas fotografi. Nama ini didapat dari camera obscurabahasa Latin untuk "ruang gelap", mekanisme awal untuk memproyeksikan tampilan di mana suatu ruangan berfungsi seperti cara kerja kamera fotografis yang modern, kecuali tidak ada cara pada waktu itu untuk mencatat tampilan gambarnya selain secara manual mengikuti jejaknya. Dalam dunia fotografi, kamera merupakan suatu peranti untuk membentuk dan merekam suatu bayangan potret pada lembaran film. Pada kamera televisi, sistem lensa membentuk gambar pada sebuah lempeng yang peka cahaya. Lempeng ini akan memancarkan elektron ke lempeng sasaran bila terkena cahaya. Selanjutnya, pancaran elektron itu diperlakukan secara elektronik. Dikenal banyak jenis kamera potret

    Sejarah[sunting | sunting sumber]

    Kamera berawal dari sebuah alat serupa yang dikenal dengan Kamera Obscura yang merupakan kotak kamera yang belum dilengkapi dengan film untuk menangkap gambar atau bayangan. Pada abad ke 16 Girolamo Cardano melengkapi kamera obscura dengan lensa pada bagian depan kamera obscura tersebut. Meski demikian, bayangan yang dihasilkan ternyata tidak tahan lama, sehingga penemuan Girolamo belum dianggap sebagai dunia fotografi. Pada tahun 1727 Johann Scultze dalam penelitiannya menemukan bahwa garam perak sangat peka terhadap cahaya namun dia belum menemukan konsep bagaimana langkah untuk meneruskan gagasannya.
    Foto tertua di dunia, Point de vue du Gras
    Pada tahun 1826Joseph Nicepore Niepce mempublikasikan gambar dari bayangan yang dihasilkan kameranya, yang berupa gambaran kabur atap-atap rumah pada sebuah lempengan campuran timah yang dipekakan yang kemudian dikenal sebagai foto pertama. Kemudian, pada tahun 1839Louis Daguerre mempublikasikan temuannya berupa gambar yang dihasilkan dari bayangan sebuah jalan di Paris pada sebuah pelat tembaga berlapis perak. Daguerre yang mengadakan kongsi pada tahun 1829 dengan Niepce meneruskan program pengembangan kamera, meski Niepce meninggal dunia pada 1833, mengembangkan kamera yang dikenal sebagai kamera daguerreotype yang dianggap praktis dalam dunia fotografi, dimana sebagai imbalan atas temuannya, Pemerintah Perancis memberikan hadiah uang pensiun seumur hidup kepada Daguerre dan keluarga Niepce. Kamera daguerreotype kemudian berkembang menjadi kamera yang dikembangkan sekarang.

    Komponen[sunting | sunting sumber]

    Sebuah kamera minimal terdiri atas:
    • Kotak yang kedap cahaya (badan kamera)
    • Sistem lensa
    • Pemantik potret (shutter)
    • Pemutar film

    Sistem lensa[sunting | sunting sumber]

    Sistem lensa dipasang pada lubang depan kotak, berupa sebuah lensa tunggal yang terbuat dari plastik atau kaca, atau sejumlah lensa yang tersusun dalam suatu silinder logam. Tingkat penghalangan cahaya dinyatakan dengan angka f, atau bukaan relatifnya. Makin rendah angka f ini, makin besar bukaannya atau makin kecil tingkat penghalangannya. Bukaan ini diatur oleh jendela diafragma. Bukaan relatif diatur oleh suatu diafragma. Untuk kamera SLR, lensa dilengkapi dengan pengatur bukaan diafragma yang mengatur banyaknya cahaya yang masuk sesuai keinginan fotografer. Jenis lensa cepat ataupun lensa lambat ditentukan oleh rentang nilai F yang dapat digunakan. Disamping lensa biasa, dikenal juga lensa sudut lebar (wide lens), lensa sudut kecil (tele lens), dan lensa variabel (variable lens, atau oleh kalangan awam disebut dengan istilah lensa zoom. Lensa sudut lebar mempunyai jarak fokus yang lebih kecil daripada lensa biasa. Namun sebutan itu bergantung pada lebarnya film yang digunakan. Untuk film 35 milimeter, lensa 35 milimeter akan disebut lensa sudut lebar, sedangkan lensa 135 milimeter akan disebut lensa telefoto. Lensa variabel dapat diubah-ubah jarak fokusnya, dengan mengubah kedudukan relatif unsur-unsur lensa tersebut. Lensa akan memfokuskan cahaya sehingga dihasilkan bayangan sesuai ukuran film. Lensa dikelompokkan sesuai panjang focal length (jarak antara kedua lensa). Focal length memengaruhi besar komposisi gambar yang mampu dihasilkan. Dalam masyarakat umum, lebih dikenal dengan istilah zoom.

    Pemantik potret[sunting | sunting sumber]

    Tombol pemantik potret atau shutter dipasang di belakang lensa atau di antara lensa. Kebanyakan kamera SLR mempunyai mekanisme pengatur waktu untuk memungkinkan mengubah-ubah lama bukaan shutter. Waktu ini ialah singkatnya pemetik potret itu membuka, sehingga memungkinkan berkas cahaya mengenai film.[1].
    Beberapa masyarakat awam menganggap kemampuan kamera sebanding dengan besarnya nilai maksimum shutter speed yang bisa digunakan.

    Bagian lain[sunting | sunting sumber]

    Bagian lain sebuah kamera, antara lain:
    1. Mekanisme memutar film gulungan agar bagian-bagian film itu bergantian dapat disingkapkan pada objek
    2. Mekanisme fokus yang dapat mengubah-ubah jarak antara lensa dan film,
    3. Pemindai komposisi pemotretan (range finder) yang menunjukkan apa saja yang akan terpotret serta apakah objek utama akan terfokuskan
    4. lightmeter untuk membantu menetapkan kecepatan pemetik potret dan atau besarnya bukaan, agar banyaknya cahaya yang mengenai film cukup tepat sehingga diperoleh bayangan atau gambar yang memuaskan.
    Beberapa kamera, terutama jenis kamera poket biasanya tidak memiliki salah satu dari bagian-bagian tersebut.

    Jenis kamera berdasarkan media penangkap cahaya[sunting | sunting sumber]

    Kamera film menggunakan pita seluloid (atau sejenisnya, sesuai perkembangan teknologi). Butiran silver halida yang menempel pada pita ini sangat sensitif terhadap cahaya. Saat proses cuci film, silver halida yang telah terekspos cahaya dengan ukuran yang tepat akan menghitam, sedangkan yang kurang atau sama sekali tidak terekspos akan tanggal dan larut bersama cairan pengembang (developer).

    Kamera film[sunting | sunting sumber]

    Jenis kamera film yang digunakan adalah dari jenis 35 milimeter, yang menjadi populer karena keserbagunaan dan kecepatannya saat memotret, karena kamera ini berukuran kecil, kompak dan tidak mencolok. Lensa kadang dapat dipertukarkan, dan kamera itu dapat memuat gulungan film untuk 36 singkapan, bahkan kadang lebih.

    Jenis film[sunting | sunting sumber]

    Pembagian film berdasarkan ukuran:
    • Small format (35mm)
    • Medium format (100-120mm)
    • Large format
    Angka di atas berarti ukuran diagonal film yang digunakan. Setiap jenis ukuran film harus menggunakan kamera yang berbeda pula.
    Pembagian film berdasarkan jenis bahan dan kesensitifannya:
    • Film hitam putih
    • Film warna
    • Film positif
    • Film negatif
    • Film daylight
    • Film tungsten
    • Film infra merah (sensitif terhadap panas yang dipantulkan permukaan objek)

    Kamera polaroid[sunting | sunting sumber]

    Kamera jenis ini memakai lembaran polaroid yang langsung memberikan gambar positif sehingga pemotret tidak perlu melakukan proses cuci cetak film.

    Kamera digital[sunting | sunting sumber]

    Kamera jenis ini merupakan kamera yang dapat bekerja tanpa menggunakan film. Si pemotret dapat dengan mudah menangkap suatu objek tanpa harus susah-susah membidiknya melalui jendela pandang karena kamera digital sebagian besar memang tidak memilikinya. Sebagai gantinya, kamera digital menggunakan sebuah layar LCD yang terpasang di belakang kamera. Lebar layar LCD pada setiap kamera digital berbeda-beda. Sebagai media penyimpanan, kamera digital menggunakan internal memory ataupun external memory yang menggunakan memory card.

    Jenis kamera berdasarkan mekanisme kerja[sunting | sunting sumber]

    Kamera single lens reflex[sunting | sunting sumber]

    Kamera ini memiliki cermin datar dengan singkap 45 derajat di belakang lensa, sehingga apa yang terlihat oleh pemotret dalam jendela pandang adalah juga apa yang akan di tangkap pada film. Umumnya kamera ini digunakan setinggi pinggang ketika dipotretkan.

    Kamera instan[sunting | sunting sumber]

    Istilah instan adalah dimilikinya mekanisme automatik pada kamera, sehingga berdasar pengukur cahaya (lightmeter atau fotometer), lebar diafragma dan kecepatan pemetik potret secara otomatis telah diatur.

    Pembagian kamera berdasarkan teknologi viewfinder[sunting | sunting sumber]

    Viewfinder memainkan peranan penting dalam penyusunan komposisi fotografi. Fotografer ahli biasanya akan lebih memilih viewfinder dengan kualitas baik dan mampu memberikan gambaran tepat seperti apa yang akan tercetak.

    Kamera saku[sunting | sunting sumber]

    Jenis yang paling populer digunakan masyarakat umum. Lensa utama tak bisa diganti,umumnya otomatis atau memerlukan sedikit penyetelan. Cahaya yang melewati lensa langsung membakar medium. Kelemahan film ini adalah gambar yang ditangkap oleh mata akan berbeda dengan yang akan dihasilkan film, karena ada perbedaan sudut pandang jendela bidik (viewfinder) dengan lensa.

    Kamera TLR[sunting | sunting sumber]

    • Kelemahan kamera poket diperbaiki oleh kamera TLR. Jendela bidik diberikan lensa yang identik dengan lensa di bawahnya. Namun tetap ada kesalahan paralaks yang ditimbulkan sebab sudut dan posisi kedua lensa tidak sama.
    sumber : https://id.wikipedia.org/wiki/Kamera

    Indra Pengliatan Manusia

    pada Manusia (Mata) : Struktur Fungsi Bagian - Mata mempunyai reseptor untuk menangkap rangsang cahaya yang disebut fotoreseptor. Oleh karena itu, pada siang hari pantulan sinar matahari oleh benda-benda di sekeliling kita dapat kita tangkap dengan jelas. Sebaliknya pada malam hari, benda-benda di sekitar kita tidak memantulkan cahaya matahari seperti waktu siang hari. Akibatnya, kita hanya mampu melihat benda-benda itu bila mereka memantulkan cahaya dari sumber cahaya lain, misalnya lampu. Perhatikan Gambar 1. untuk mengetahui bagian-bagian bola mata. (Baca juga : Indera Manusia)
    Bagian-bagian bola mata
    Gambar 1. Bagian-bagian bola mata
    Mata terdiri atas beberapa bagian. Bagian-bagian mata dan fungsinya dijelaskan dalam Tabel 1. berikut.

    Tabel 1. Bagian-Bagian Mata dan Fungsinya
    Bagian Mata
    Fungsi
    a.
    Sklera
    :
    pembungkus lapisan luar
    Melindungi bola mata dari kerusakan mekanis dan memungkinkan melototnya otot mata
    b.
    Kornea
    :
    selaput bening tembus pandang pada bagian depan sklera
    Penerima rangsang cahaya
    Mereaksikan cahaya
    c.
    Koroidea
    :
    lapisan tengah di antara sklera dan retina berupa selaput darah (kecuali di bagian depan)
    Penyedia makan bagi bagian mata yang lain
    d.
    Iris (selaput pelangi)
    :
    selaput berwarna (mengandung pigmen melanin) merupakan bagian depan koroidea
    Melindungi refleksi cahaya dalam mata
    Mengendalikan kerja pupil
    e.
    Pupil
    :
    berupa lubang yang dibatasi oleh iris
    Mengatur banyak sedikit cahaya yang diperlukan mata
    f.
    Lensa
    :
    berupa lensa bikonveks
    Membiaskan dan memfokuskan cahaya agar bayangan benda tepat jatuh pada retina mata
    g.
    Aqueous humor
    :
    berupa cairan encer
    Menjaga bentuk kantong depan bola mata
    h.
    Vitreous humor
    :
    berupa cairan bening dan kental selaput jala
    Meneruskan rangsang ke bagian mata mem-perkukuh bola mata
    i.
    Retina
    :

    Menerima bayangan dan untuk melihat benda
    j.
    Fovea (bintik kuning)
    :
    berupa bagian yang mengandung sel- sel kerucut
    Sebagai tempat bayangan jatuh pada daerah retina
    k.
    Badan silia
    :
    berupa otot melingkar dan otot radial yang terdekat pada ujung depan lapisan koroid yang membentuk penebalan
    Menyokong lensa dan mensekresikan aqueous humor
    l.
    Bintik buta
    :
    tempat saraf optik meninggalkan bagian dalam bola mata
    Tidak peka terhadap cahaya karena tidak mengandung sel konus dan sedikit sel batang
    m.
    Saraf mata
    :
    berupa serabut saraf
    Meneruskan rangsang cahaya ke saraf kranial (saraf optik)

    Rangsang yang diterima indra penglihat (mata) berupa cahaya. Cahaya yang masuk melalui kornea akan diteruskan seperti berikut.

    Cahaya → Aqueous humor → Pupil → Lensa → Vitreous humor → Retina

    Apabila cahaya yang masuk terlalu terang, pupil akan menyempit atau mengalami konstriksi. Bila cahaya redup, pupil akan melebar atau mengalami dilatasi. Cahaya yang dipantulkan ke mata masuk ke dalam retina khususnya pada fovea (bintik kuning). Cahaya ini dapat terfokus ke dalam fovea karena diatur oleh lensa. Lensa mata mempunyai kemampuan untuk memipih dan mencembung. Kemampuan ini disebut daya akomodasi. Coba

    Anda rasakan gerakan otot mata Anda saat membaca buku ini.

    Pada jarak seperti ini berarti jarak benda dekat. Apakah Anda merasakan adanya perubahan pada otot mata Anda bila dibandingkan dengan otot mata yang digunakan saat melihat benda yang jauh?

    Otot yang terikat pada lensa dan dinding koroidea ini disebut otot siliaris. Otot ini berfungsi mengubah bentuk lensa. Apabila lensa digunakan untuk melihat benda jarak dekat maka lensa mata akan mencembung, bentuk lensa akan memipih bila digunakan untuk melihat benda jarak jauh. Pada retina terkandung 2 macam sel yaitu sel batang dan sel kerucut. Sel batang mengandung pigmen rhodopsin, yaitu suatu bentuk senyawa vitamin A dengan protein tertentu. Sel-sel ini paling banyak terletak di fovea dan berfungsi untuk menerima bayangan dengan cahaya lemah, dan bayangan yang terbentuk atau terpersepsi hitam putih. Perhatikan Gambar 2.
    Sel kerucut dan sel batang pada mata
    Gambar 2. Sel kerucut dan sel batang pada mata
    Apakah Anda pernah mengalami pandangan menjadi gelap saat masuk ruangan (dari luar ruangan yang terang benderang)?

    Bagaimana hal tersebut dapat terjadi? Saat Anda berada di luar ruangan (terdapat cahaya matahari) sel kerucut melakukan tugasnya menyampaikan bayangan ke otak. Sementara itu, pigmen-pigmen rhodopsin dalam sel batang akan terurai sehingga sel batang tidak dapat bekerja dengan baik. Jika tiba-tiba Anda masuk ke ruangan gelap, pigmen-pigmen rhodopsin yang terurai dalam sel batang akan terbentuk kembali, dan sel batang akan mengambil alih tugas sel kerucut dalam menyampaikan bayangan ke otak. Terbentuknya pigmen-pigmen rhodopsin itu berlangsung secara bertahap. Hal ini menyebabkan seseorang tidak dapat segera melihat dengan jelas saat memasuki ruang gelap. Lama waktu yang diperlukan untuk proses pembentukan rhodopsin disebut waktu adaptasi rhodopsin.

    Selain mengandung sel batang, retina juga mengandung sel kerucut atau sel konus. Sel ini mengandung iodopsin. Fungsi sel konus untuk menerima rangsang warna merah, biru, dan hijau. Setiap satu sel kerucut mengandung satu di antara ketiga pigmen. Apabila retina mata hanya memiliki satu pigmen atau sel kerucut satu maka akan mengalami buta warna. Orang yang hanya memiliki dua macam sel kerucut disebut dikromat.
    Sementara itu, orang yang hanya memiliki satu macam sel kerucut disebut monokromat. Pada monokromat, warna yang terlihat oleh mata hanya hitam dan putih serta bayangan kelabu.

    Seluruh bagian retina terdapat sel-sel batang maupun sel kerucut, kecuali tempat saraf mata berada. Daerah tempat saraf mata ini sangat kecil hingga menyerupai sebuah titik saja. Titik kecil ini disebut bintik buta.

    Kemampuan lensa memfokuskan bayangan pada retina berbeda-beda. Berikut ini adalah gambar lensa saat memfokuskan bayangan tersebut.

    Selain harus ada cahaya, syarat agar mata dapat melihat dengan baik yaitu mata harus dalam keadaan normal. Mata normal (emetropi) yaitu mata yang dapat berakomodasi dengan baik.Titik terjauh (punctum remotum) berada pada jarak sejauhjauhnya. Titik terdekat (punctum proximum) berada pada jarak baca ideal (25 cm) di depan mata. Perhatikan Gambar 3.
    Lensa mata mampu memipih dan mencembung
    Gambar 3. Lensa mata mampu memipih (a) dan mencembung (b)
    Oleh karena sesuatu hal, mata dapat mengalami cacat mata. Perhatikan Gambar 4. untuk mengetahui macam-macam cacat mata.
    Cacat mata pada manusia hipermetropi dan miopi
    Gambar 4. Cacat mata pada manusia hipermetropi (a) dan miopi (b)
    1. Rabun dekat (hipermetropi) adalah cacat mata yang mengakibatkan pandangan mata kabur jika melihat benda yang dekat dengan mata. Hal ini karena lensa mata tidak dapat mencembung dengan sempurna. Rabun dekat dapat dibantu dengan kacamata berlensa positif atau cembung.
    2. Rabun jauh (miopi) adalah cacat mata yang mengakibatkan pandangan mata kabur jika melihat benda yang jauh dari mata. Hal ini karena lensa mata tidak dapat memipih dengan sempurna. Rabun jauh dapat dibantu dengan kacamata berlensa negatif atau cekung.
    3. Mata tua (presbiopi) adalah cacat mata yang mengakibatkan pandangan mata kabur jika melihat benda yang dekat maupun benda yang jauh. Cacat mata ini karena lensa mata tidak dapat berakomodasi dengan baik. Mata tua dapat dibantu dengan kacamata berlensa ganda.
    4. Buta warna adalah cacat mata karena kerusakan sel konus, sehingga penderita tidak dapat membedakan warna. Biasanya merupakan cacat keturunan.
    5. Astigmatisme adalah kecembungan kornea tidak merata sehingga bayangan menjadi tidak terfokus (kabur). Cacat mata ini dapat dibantu dengan lensa silinder (silindris).
    Lensa Kamera = Lensa Mata

    Bagian-bagian, fungsi, dan proses yang terdapat pada kamera dibuat seperti mata manusia. Akan tetapi, kemampuan mata dalam mencembung dan memipihkan lensa tidak dapat ditiru oleh kamera. Kamera hanya dapat menyesuaikan jarak lensa agar maju dan mundur seperti sistem mata pada ikan dan hewan lain. (Sumber: Biologi, Kimball)

    Cara Mengatasi Mata Minus Secara Alami

    Ada cara alami untuk mencegah, mengatasi, atau setidaknya untuk membuat miopi tidak semakin parah. Pertama, kurangi membaca di dalam mobil atau bus yang sedang berjalan. Kedua, lakukan latihan dengan memutar mata satu lingkaran penuh dari arah kiri ke kanan lalu dibalik dari arah kanan ke kiri. Lakukan latihan ini perlahanlahan, jangan terlalu keras agar retina tidak tertekan. Lakukan latihan tersebut berulang-ulang, jika kepala pusing, berhentilah sebentar kemudian dilanjutkan lagi. Latihan ini dapat dilakukan setiap hari selama 10 menit. 
    sumber : http://www.nafiun.com/2012/12/indera-penglihatan-pada-manusia-mata-struktur-bagian-fungsi.html